1,613 research outputs found

    Electromagnetic interactions in a pair of coupled split-ring resonators

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.Split-ring Resonators (SRRs) are a fundamental building block of many electromagnetic metamaterials. Typically the response of a metamaterial is assumed to be independent of inter-element interactions in the material. We show that SRRs in close proximity to each other exhibit a rich coupling that involves both electric and magnetic interactions. We study experimentally and computationally the strength and nature of the coupling between two identical SRRs as a function of their separation and relative orientation. We characterise the electric and magnetic couplings and find that, when SRRs are close enough to be in each other's near-field, the electric and magnetic couplings may either reinforce each other or act in opposition. At larger separations retardation effects become important.We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1)

    Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment

    Full text link
    Ā© 2018 Elsevier Ltd Shifting environmental conditions are known to be important triggers of oyster diseases. The mechanism(s) behind these synergistic effects (interplay between host, environment and pathogen/s) are often not clear, although there is evidence that shifts in environmental conditions can affect oyster immunity, and pathogen growth and virulence. However, the impact of shifting environmental parameters on the oyster microbiome and how this affects oyster health and susceptibility to infectious pathogens remains understudied. In this review, we summarise the major diseases afflicting oysters with a focus on the role of environmental factors that can catalyse or amplify disease outbreaks. We also consider the potential role of the oyster microbiome in buffering or augmenting oyster disease outbreaks and suggest that a deeper understanding of the oyster microbiome, its links to the environment and its effect on oyster health and disease susceptibility, is required to develop new frameworks for the prevention and management of oyster diseases

    Correspondence Between Urban Bird Roosts and the Presence of Aerosolised Fungal Pathogens

    Full text link
    Ā© 2016, Springer Science+Business Media Dordrecht. Habitat fragmentation in urban environments concentrates bird populations that have managed to adapt to these newly developed areas. Consequently, the roosts of these birds are potentially creating environments conducive to fungal growth and dissemination. Airborne fungi derived from these environments are relatively unstudied, as is the potential health risk arising from these fungi. This study documented the diversity of culturable airborne fungal propagules associated with forty urban bird roosts. Environmental variables from each site were recorded to allow us to analyse the correspondence between different bird species, the substrate they occupy and airborne fungal propagules. Associations were established between Rhodotorula and Pacific black ducks, wood ducks, myna birds and miner birds when in the presence of bare soil as a substrate. Further associations were established between Penicillium, Scopulariopsis and Cunninghamella and pigeons, sparrows and swallows living in areas with hard surfaces such as bitumen and rocks

    Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event

    Full text link
    Ā© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20Ā Ā°C to 25Ā Ā°C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25Ā Ā°C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture

    Occurrence and dynamics of potentially pathogenic vibrios in the wet-dry tropics of northern Australia

    Full text link
    Bacteria from the Vibrio genus are a ubiquitous component of coastal and estuarine ecosystems with several pathogenic Vibrio species displaying preferences for warm tropical waters. We studied the spatial and temporal abundance of three key human potential pathogens V. parahaemolyticus, V. cholerae and V. vulnificus in northern tropical Australia, over the wet and dry seasons, to identify environmental parameters influencing their abundance. Quantitative PCR (qPCR) analysis revealed that V. parahaemolyticus occurred more frequently and in higher abundance than V. cholerae and V. vulnificus across all locations examined. All three species were more abundant during the wet season, with V. parahaemolyticus abundance correlated to temperature and conductivity, whereas nutrient concentrations and turbidity best explained V. vulnificus abundance. In addition to these targeted qPCR analyses, we assessed the composition and dynamics of the entire Vibrio community using hsp60 amplicon sequencing. Using this approach, 42 Vibrio species were identified, including a number of other pathogenic species such as V. alginolyticus, V. mimicus and V. fluvialis. The Vibrio community was more diverse in the wet season, with temperature and dissolved oxygen as the key factors governing community composition. Seasonal differences were primarily driven by a greater abundance of V. parahaemolyticus and V. vulnificus during the wet season, while spatial differences were driven by different abundances of V. harveyi, V. campbellii, V. cholerae and V. navarrensis. When we related the abundance of Vibrio to other bacterial taxa, defined using 16S rRNA gene amplicon sequencing, V. parahaemolyticus was negatively correlated to several taxa, including members of the Rickettsiales and Saccharimonadales, while V. vulnificus was negatively correlated to Rhobacteriaceae and Cyanobiaceae. In contrast, V. alginolyticus, V. harveyi and V. mediterranei were all positively correlated to Cyanobacteria. These observations highlight the dynamic nature of Vibrio communities and expands current understanding of the processes governing the occurrence of potentially pathogenic Vibrio spp. in tropical coastal ecosystems

    A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event

    Full text link
    Ā© Copyright Ā© 2019 King, Siboni, Kahlke, Green, Labbate and Seymour. The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment

    mab-31 and the TGF-Ī² pathway act in the ray lineage to pattern C. elegans male sensory rays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>C. elegans </it>TGF-Ī²-like Sma/Mab signaling pathway regulates both body size and sensory ray patterning. Most of the components in this pathway were initially identified by genetic screens based on the small body phenotype, and many of these mutants display sensory ray patterning defect. At the cellular level, little is known about how and where these components work although ray structural cell has been implicated as one of the targets. Based on the specific ray patterning abnormality, we aim to identify by RNAi approach additional components that function specifically in the ray lineage to elucidate the regulatory role of TGF-Ī² signaling in ray differentiation.</p> <p>Result</p> <p>We report here the characterization of a new member of the Sma/Mab pathway, <it>mab-31</it>, recovered from a genome-wide RNAi screen. <it>mab-31 </it>mutants showed ray cell cluster patterning defect and mis-specification of the ray identity. <it>mab-31 </it>encodes a nuclear protein expressed in descendants of ray precursor cells impacting on the ray cell's clustering properties, orientation of cell division plane, and fusion of structural cells. Genetic experiments also establish its relationship with other Sma/Mab pathway components and transcription factors acting upstream and downstream of the signaling event.</p> <p>Conclusion</p> <p><it>mab-31 </it>function is indispensable in Sma/Mab signal recipient cells during sensory rays specification. Both <it>mab-31 </it>and <it>sma-6 </it>are required in ray lineage at the late larval stages. They act upstream of <it>C. elegans Pax-6 </it>homolog and repress its function. These findings suggested <it>mab-31 </it>is a key factor that can integrate TFG-Ī² signals in male sensory ray lineage to define organ identity.</p

    Pearl Oyster Bacterial Community Structure Is Governed by Location and Tissue-Type, but Vibrio Species Are Shared Among Oyster Tissues.

    Full text link
    Diseases of bivalves of aquacultural importance, including the valuable Australian silver-lipped pearl oyster (Pinctada maxima), have been increasing in frequency and severity. The bivalve microbiome is linked to health and disease dynamics, particularly in oysters, with putative pathogens within the Vibrio genus commonly implicated in oyster diseases. Previous studies have been biased toward the Pacific oyster because of its global dominance in oyster aquaculture, while much less is known about the microbiome of P. maxima. We sought to address this knowledge gap by characterizing the P. maxima bacterial community, and we hypothesized that bacterial community composition, and specifically the occurrence of Vibrio, will vary according to the sampled microenvironment. We also predicted that the inside shell swab bacterial composition could represent a source of microbial spillover biofilm into the solid pearl oyster tissues, thus providing a useful predictive sampling environment. We found that there was significant heterogeneity in bacterial composition between different pearl oyster tissues, which is consistent with patterns reported in other bivalve species and supports the hypothesis that each tissue type represents a unique microenvironment for bacterial colonization. We suggest that, based on the strong effect of tissue-type on the pearl oyster bacterial community, future studies should apply caution when attempting to compare microbial patterns from different locations, and when searching for disease agents. The lack of association with water at each farm also supported the unique nature of the microbial communities in oyster tissues. In contrast to the whole bacterial community, there was no significant difference in the Vibrio community among tissue types nor location. These results suggest that Vibrio species are shared among different pearl oyster tissues. In particular, the similarity between the haemolymph, inside shell and solid tissues, suggests that the haemolymph and inside shell environment is a source of microbial spillover into the oyster tissues, and a potentially useful tool for non-destructive routine disease testing and early warning surveillance. These data provide important foundational information for future studies identifying the factors that drive microbial assembly in a valuable aquaculture species

    Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community.

    Full text link
    Different organs of a host represent distinct microenvironments resulting in the establishment of multiple discrete bacterial communities within a host. These discrete bacterial communities can also vary according to geographical location. For the Pacific oyster, Crassostrea gigas, the factors governing bacterial diversity and abundance of different oyster microenvironments are poorly understood. In this study, the factors shaping bacterial abundance, diversity and composition associated with the C. gigas mantle, gill, adductor muscle, and digestive gland were characterised using 16S (V3-V4) rRNA amplicon sequencing across six discrete estuaries. Both location and tissue-type, with tissue-type being the stronger determinant, were factors driving bacterial community composition. Bacterial communities from wave-dominated estuaries had similar compositions and higher bacterial abundance despite being geographically distant from one another, possibly indicating that functional estuarine morphology characteristics are a factor shaping the oyster bacterial community. Despite the bacterial community heterogeneity, examinations of the core bacterial community identified Spirochaetaceae bacteria as conserved across all sites and samples. Whereas members of the Vulcaniibacterium, Spirochaetaceae and Margulisbacteria, and Polynucleobacter were regionally conserved members of the digestive gland, gill, and mantle bacterial communities respectively. This indicates that baseline bacterial community profiles for specific locations are necessary when investigating bacterial communities in oyster health

    Problems in the treatment of malabsorption in CF

    Get PDF
    ABSTRACT. Several factors play a role in the cause of malabsorption in CF. Besides the enzyme deficiency in the secretion of the exocrine pancreas, decreased bileā€salt concentration in the gut may also be an important factor in the fat malabsorption. The contribution to the fat absorption by other lipases, such as lingual lipase and gastric lipase, remains to he proved. The therapeutic measures are only partly effective because of the breakdown of swalled enzymes by gastric acid. Some improvement is reached by using a new acidā€resistant coating for the enzyme supplement. Newly developed and essential for its success is the application of small coated particles to prevent retention in the stomach, and the easy breakdown of the coating in an alkaline solution. The treatment of the bile salt deficiency has not been successful until now. A trial with additional Tween 80, with the option of supplementing the detergent activity which was found to he successful in Crohn disease, was without marked success. Copyrigh
    • ā€¦
    corecore